

Recent Progress in the High-Gain FEL Theory

Zhirong Huang

Argonne National Laboratory

Introduction

- An exciting path to future x-ray sources: a high-gain FEL operated in SASE mode
- FEL theory well developed in the exponential growth regime (energy spread, emittance, diffraction, guiding)
- Tremendous progress in high-gain experiments wavelength down to < 100 nm saturation achieved
- Stimulate new developments in high-gain FEL theory, some aspects are discussed in this talk (mostly based on collaborative work with K.-J. Kim)

Overview

Start-up stage

External signal or spontaneous radiation starts to interact with the e-beam resonantly at undulator λ

Energy modulation \rightarrow density modulation (microbunching) \rightarrow coherent radiation at $\lambda \rightarrow$ Exponential growth (L_G)

At sufficiently high power, electrons fully microbunched with large energy spread → reach Saturation (P_{sat})

Start-up Process

- Spontaneous emission excites many transverse modes
- FEL instability favors a particular (fundamental) mode
- proper modal decomposition for initial value problem

$$\left(\frac{dP}{d\omega}\right)_{\text{fund.}\atop\text{mode}} = g_A \left[\left(\frac{dP}{d\omega}\right)_{\text{noise}} + \left(\frac{dP}{d\omega}\right)_{\text{signal}}\right] \exp\left(\frac{Z}{L_G}\right)$$

- Effective start-up noise (for SASE): coherent fraction of the spontaneous emission over the first two L_G and can increase with energy spread and emittance through L_G
- 2D Solution determines the radiation energy level in exponential gain regime

Comparison with Time-dependent Codes

Basic Transverse and Temporal Properties

- Diffraction + Gain → transverse mode selection
 - ⇒ fundamental mode dominates (gain guiding)
 - ⇒ high transverse coherence
- SASE is a chaotic light temporally

Coherence length =
$$\frac{c}{2\sigma_{\omega}} \approx \frac{\lambda}{4\pi} \sqrt{\frac{N_u}{\rho}} << \text{Bunch length}$$

Intensity fluctuation

$$\frac{\Delta I}{I} = \frac{1}{\sqrt{M}}$$
, where $M = \frac{\text{bunch length}}{\text{coherence length}}$

• Statistical fluctuation is large for long-wavelength exps, but much smaller for XFELs (dominated by jitter etc...)

Transverse and Temporal Properties: Interplay

- Transverse coherence somewhat affected by "large" SASE bandwidth (Saldin et al.)
- Different fundamental modes for different frequencies
- FEL fundamental mode and its transverse phase space

 Smearing of radiation phase space ellipses reduces transverse coherence: LEUTL~ 90%, LCLS ~ 97%

Nonlinear Harmonic Generation

- FEL instability creates energy and density modulation at λ ,
- Near saturation, strong bunching at fundamental λ produces rich harmonic components

small signal, linear regime

near saturation, nonlinear regime

- Coherent harmonics drive by fundamental λ
 - \rightarrow gain length = L_G/h (h is harmonic order)
 - → transverse coherence
 - → temporal structures

Plenty of Power at (3X) Shorter Wavelength

Theory predicts third harmonic reaches 1% of fundamental,
Verified by recent high-gain experiments

LCLS expectation ≥

Saturation Mechanism

 Quasi-linear relaxation: strong radiation field modifies ebeam distribution → increased energy spread suppress the gain → FEL saturation

- Quasi-linear solution
- Simulation fitting (Xie)

Saturation Behaviors

- XFELs operate in saturation for max. power/stability, seeding schemes go deep saturation to reduce fluctuation
- Electrons trapped by combined radiation+undulator fields

- Radiation power stays roughly constant, but phase advances due to the beam-radiation interaction
- → an effective index of refraction (>1) (Scharleman et al.)

Refractive Guiding

 Guided mode that carries fixed power → constant FWHM some excess power diffracts out → increased rms size other excess power stays oscillatory

Guided Mode after Saturation

- Valid when emittance $< \lambda/4\pi$
- For XFELs, emittance > $\lambda/4\pi$, any guiding?

Sideband Instability

- Before saturation, SASE spectrum undergoes gain narrowing
- After saturation, spectrum redshifts and broaden because electron's synchrotron motion in the bucket generates sidebands

 LEUTL shows such a behavior (Sajaev et al.)

Conclusion

- Evolution of FEL fundamental and harmonic radiation can be completely determined for simple e-beam distributions from start-up to near saturation
- Some understandings of saturation behaviors, more needed in combination with numerical simulations
- Quantum effects (Schroeder et al.) are negligible in XFELs except for quantum fluctuation due to spontaneous radiation (Saldin et al.)
- Excitements of XFELs lead to further progress in all areas of high-gain FEL research (including theory)